二次函数综合题.
(1)对于抛物线解析式,令x=0求出y的值,确定出OC的值,得出C的坐标,令y=0求出x的值,确定出B的坐标,进而得出抛物线对称轴;
(2)设直线BC的解析式为y=kx+b,将B与C坐标代入求出k与b的值,即可确定出直线BC解析式;
(3)将x=1代入抛物线解析式,求出y的值,确定出D坐标,将x=1代入直线BC解析式求出y的值,确定出E坐标,求出DE长,将x=m代入抛物线解析式表示出F纵坐标,将x=m代入直线BC解析式表示出P纵坐标,两纵坐标相减表示出线段PF,由DE与FP平行,要使四边形PEDF为平行四边形,只需DE=PF,列出关于m的方程,求出方程的解得到m的值,检验即可.
此题考查了二次函数综合题,涉及的知识有:坐标与图形性质,一次函数与坐标轴的交点,抛物线与坐标轴的交点,平行四边形的判定,以及待定系数法求函数解析式,熟练掌握待定系数法是解本题第二问的关键.
综合题.