试题
题目:
(2012·南通一模)如图1,抛物线y=nx
2
-11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.
(1)填空:点B的坐标为(
(3,0)
(3,0)
),点C的坐标为(
(8,0)
(8,0)
);
(2)连接OA,若△OAC为等腰三角形.
①求此时抛物线的解析式;
②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
答案
(3,0)
(8,0)
解:(1)∵抛物线y=nx
2
-11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),
∴抛物线与x轴的交点坐标为:0=nx
2
-11nx+24n,
解得:x
1
=3,x
2
=8,
∴OB=3,OC=8,
故B点坐标为(3,0),C点坐标为:(8,0);
(2)①如图1,作AE⊥OC,垂足为点E
∵△OAC是等腰三角形,∴OE=EC=
1
2
×8=4,∴BE=4-3=1,
又∵∠BAC=90°,∴△ACE∽△BAE,∴
AE
BE
=
CE
AE
,
∴AE
2
=BE·CE=1×4,∴AE=2,
∴点A的坐标为 (4,2),
把点A的坐标 (4,2)代入抛物线y=nx
2
-11nx+24n,得n=-
1
2
,
∴抛物线的解析式为y=-
1
2
x
2
+
11
2
x-12,
②∵点M的横坐标为m,且点M在①中的抛物线上,
∴点M的坐标为 (m,-
1
2
m
2
+
11
2
m-12),由①知,点D的坐标为(4,-2),
则C、D两点的坐标求直线CD的解析式为y=
1
2
x-4,
∴点N的坐标为 (m,
1
2
m-4),
∴MN=(-
1
2
m
2
+
11
2
m-12)-(
1
2
m-4)=-
1
2
m
2
+5m-8,
∴S
四边形AMCN
=S
△AMN
+S
△CMN
=
1
2
MN·CE=
1
2
(-
1
2
m
2
+5m-8)×4,
=-(m-5)
2
+9,
∴当m=5时,S
四边形AMCN
=9.
考点梳理
考点
分析
点评
二次函数综合题.
(1)根据二次函数与x轴交点坐标求法,解一元二次方程即可得出;
(2)①利用菱形性质得出AD⊥OC,进而得出△ACE∽△BAE,即可得出A点坐标,进而求出二次函数解析式;
②首先求出过C、D两点的坐标的直线CD的解析式,进而利用S
四边形AMCN
=S
△AMN
+S
△CMN
求出即可.
此题主要考查了二次函数与坐标轴交点坐标求法以及菱形性质和四边形面积求法等知识,根据已知得出△ACE∽△BAE是解决问题的关键.
找相似题
(2013·淄博)如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax
2
上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为( )
(2010·石景山区一模)已知:如图1,等边△ABC为2
3
,一边在x上且A(1-
3
,0),AC交y轴于点,过点E作EF∥AB交BC于点F.
(1)直接写出点B、C的坐标;
(2)若直线y=kx-1(k≠0)将四边形EABF的面积等分,求k的值;
(3)如图2,过点A、B、C线与y轴交于点D,M为线段OB上的一个动点,过x轴上一点G(-2,0)作DM的垂线,垂足为H,直线GH交y轴于点N,当M在线段OB上运动时,现给出两个结论:①∠GNM=∠CDM;②∠MGN=∠DCM,其中只有一个是正确的,请你判断哪个结论正确,并证明.
(2010·同安区质检)已知:如图,抛物线y=ax
2
+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.
(1)求抛物线的函数表达式;
(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.
①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?
②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
(2010·武昌区模拟)抛物线y=ax
2
+bx+c与x轴交于A,B两点,与y轴交于点C;
(1)Q(2,k)是该抛物线上一点,且AQ⊥BQ,则ak的值为
-1
-1
.
(2)若点A(-1,0),B(3,0)C(0,3).
①求抛物线的解析式;
②点M在x轴上方抛物线上,点N在y轴负半轴上,且四边形ACMN是等腰梯形,求点M的坐标.
(2010·秀洲区一模)如图,平面直角坐标系中,点O(0,0)、A(1,0),过点A作x轴的垂线交直线y=x于点B
,以O为圆心,OA为半径的圆交y轴于C、D两点,抛物线y=x
2
+bx+c经过B、D.
(1)求b,c的值;
(2)设抛物线的对称轴交x轴于点E,连接DE并延长交⊙O于F,求EF的长;
(3)若⊙O交x轴负半轴于点G,过点C作⊙O的切线交DG的延长线于点P.
探究:点P是否在抛物线上?请说明理由.