试题

题目:
青果学院(2012·邯郸一模)已知:如图,抛物线y=-x2+bx+c的图象经过点A(1,0),B (0,5)两点,该抛物线与x轴的另一交点为C.
(1)求这个抛物线的解析式和点C的坐标;
(2)在x轴上方的抛物线上有一动点D,其横坐标为m,设由A、B、C、D组成的四边形的面积为S.试求S与m的函数关系式,并说明m为何值时,S最大;
(3)P是线段OC上的一动点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请直接写出P点的坐标.
答案
解:(1)∵抛物线y=-x2+bx+c的图象经过点A(1,0),B (0,5)两点,
-1+b+c=0
c=5

解得
b=-4
c=5

∴抛物线解析式为y=-x2-4x+5,
令y=0,则-x2-4x+5=0,
解得x1=1,x2=-5,
∴点C的坐标为(-5,0);
青果学院

(2)①如图1,点D在y轴左边时,过点D作DE⊥x轴于点E,
∵点D的横坐标为m,
∴DE=-m2-4m+5,OE=-m,CE=m-(-5)=m+5,
∴S=S△CDE+S梯形BDOE+S△AOB
=
1
2
CE·DE+
1
2
(DE+OB)·OE+
1
2
AO·BO,
=
1
2
(m+5)×(-m2-4m+5)+
1
2
(-m2-4m+5+5)×(-m)+
1
2
×1×5,
=
1
2
×5(-m2-4m+5)-
1
2
×5m+
1
2
×5,
=-
5
2
(m2+5m)+15,
=-
5
2
(m2+5m+
25
4
)+
5
2
×
25
4
+15,
=-
5
2
(m+
5
2
2+
245
8

即S=-
5
2
(m+
5
2
2+
245
8
(-5<m<0),
所以,当m=-
5
2
时,S有最大值,最大值为
245
8

②如图2,点D在y轴右边时,过点D作DE⊥x轴于点E,
∵点D的横坐标为m,
∴DE=-m2-4m+5,OE=m,AE=1-m,
S=S△BOC+S梯形BOED+S△ADE
=
1
2
OC·OB+
1
2
(DE+OB)·OE+
1
2
AE·DE,
=
1
2
×5×5+
1
2
(-m2-4m+5+5)×m+
1
2
(1-m)×(-m2-4m+5),
=
1
2
×25+
1
2
×5m+
1
2
(-m2-4m+5),
=-
1
2
(m2-m)+15,
=-
1
2
(m2-m+
1
4
)+
1
8
+15,
=-
1
2
(m-
1
2
2+
121
8

即S=-
1
2
(m-
1
2
2+
121
8
(0<m<1),
所以,当m=
1
2
时,S有最大值,最大值为
121
8

245
8
121
8

∴当m=-
5
2
时,S有最大值,最大值为
245
8


(3)如图,∵B (0,5),C(-5,0),
∴设直线BC的解析式为y=kx+n,则
n=5
-5k+n=0
青果学院
解得
k=1
n=5

∴直线BC的解析式为y=x+5,
设点P的坐标为(x,0),PH与BC相交于点F,
则PF=x-(-5)=x+5,PH=-x2-4x+5,
∴HF=PH-PF=-x2-4x+5-x-5=-x2-5x,
∵直线BC把△PCH分成面积之比为2:3的两部分,
∴HF:PF=2:3或PF:HF=2:3,
即(-x2-5x):(x+5)=2:3或(x+5):(-x2-5x)=2:3,
整理得,2x2+13x+15=0或3x2+17x+10=0,
解得x1=-
3
2
,x2=-5(舍去)或x3=-
2
3
,x4=-5(舍去),
所以,点P的坐标为(-
3
2
,0)或(-
2
3
,0).
解:(1)∵抛物线y=-x2+bx+c的图象经过点A(1,0),B (0,5)两点,
-1+b+c=0
c=5

解得
b=-4
c=5

∴抛物线解析式为y=-x2-4x+5,
令y=0,则-x2-4x+5=0,
解得x1=1,x2=-5,
∴点C的坐标为(-5,0);
青果学院

(2)①如图1,点D在y轴左边时,过点D作DE⊥x轴于点E,
∵点D的横坐标为m,
∴DE=-m2-4m+5,OE=-m,CE=m-(-5)=m+5,
∴S=S△CDE+S梯形BDOE+S△AOB
=
1
2
CE·DE+
1
2
(DE+OB)·OE+
1
2
AO·BO,
=
1
2
(m+5)×(-m2-4m+5)+
1
2
(-m2-4m+5+5)×(-m)+
1
2
×1×5,
=
1
2
×5(-m2-4m+5)-
1
2
×5m+
1
2
×5,
=-
5
2
(m2+5m)+15,
=-
5
2
(m2+5m+
25
4
)+
5
2
×
25
4
+15,
=-
5
2
(m+
5
2
2+
245
8

即S=-
5
2
(m+
5
2
2+
245
8
(-5<m<0),
所以,当m=-
5
2
时,S有最大值,最大值为
245
8

②如图2,点D在y轴右边时,过点D作DE⊥x轴于点E,
∵点D的横坐标为m,
∴DE=-m2-4m+5,OE=m,AE=1-m,
S=S△BOC+S梯形BOED+S△ADE
=
1
2
OC·OB+
1
2
(DE+OB)·OE+
1
2
AE·DE,
=
1
2
×5×5+
1
2
(-m2-4m+5+5)×m+
1
2
(1-m)×(-m2-4m+5),
=
1
2
×25+
1
2
×5m+
1
2
(-m2-4m+5),
=-
1
2
(m2-m)+15,
=-
1
2
(m2-m+
1
4
)+
1
8
+15,
=-
1
2
(m-
1
2
2+
121
8

即S=-
1
2
(m-
1
2
2+
121
8
(0<m<1),
所以,当m=
1
2
时,S有最大值,最大值为
121
8

245
8
121
8

∴当m=-
5
2
时,S有最大值,最大值为
245
8


(3)如图,∵B (0,5),C(-5,0),
∴设直线BC的解析式为y=kx+n,则
n=5
-5k+n=0
青果学院
解得
k=1
n=5

∴直线BC的解析式为y=x+5,
设点P的坐标为(x,0),PH与BC相交于点F,
则PF=x-(-5)=x+5,PH=-x2-4x+5,
∴HF=PH-PF=-x2-4x+5-x-5=-x2-5x,
∵直线BC把△PCH分成面积之比为2:3的两部分,
∴HF:PF=2:3或PF:HF=2:3,
即(-x2-5x):(x+5)=2:3或(x+5):(-x2-5x)=2:3,
整理得,2x2+13x+15=0或3x2+17x+10=0,
解得x1=-
3
2
,x2=-5(舍去)或x3=-
2
3
,x4=-5(舍去),
所以,点P的坐标为(-
3
2
,0)或(-
2
3
,0).
考点梳理
二次函数综合题.
(1)把点A、B的坐标代入抛物线解析式,解关于b、c的方程组求出b、c的值即可得到抛物线解析式,令y=0,解关于x的一元二次方程即可得到点C的坐标;
(2)①分点D在y轴左边时,过点D作DE⊥x轴于点E,再用m表示出DE、CE、OE的长度,然后根据S=S△CDE+S梯形BDOE+S△AOB,利用三角形的面积公式与梯形的面积公式列式整理即可;②点D在y轴右边时,过点D作DE⊥x轴于点E,再用m表示出DE、OE、AE的长度,然后根据S=S△BOC+S梯形BOED+S△ADE,利用三角形的面积公式与梯形的面积公式列式整理即可,根据x的取值范围结合二次函数的最值问题分别求出S的最大值,然后即可得解;
(3)利用待定系数法求一次函数解析式求出直线BC的解析式,设PH与BC相交于点F,点P的坐标为(x,0)然后表示出PF、HF的长度,再根据等高的三角形的面积的比等于底边的比,分HF:PF=2:3,PF:HF=2:3两种情况分别列式进行计算即可得解.
本题是对二次函数的综合考查,主要利用了待定系数法求函数解析式,抛物线与x轴的交点问题,求不规则图形的面积,等高的三角形的面积的比等于底边的比的性质,分类讨论的思想,综合性较强,难度较大,且运算量非常大,需仔细分析并认真计算.
代数几何综合题.
找相似题