试题
题目:
如图,已知点C是
AB
的中点,半径OC与弦AB相交于D,如果∠OAB=60°,AB=8厘米,那么∠AOD=
30
30
度; CD=
8-4
3
8-4
3
厘米.
答案
30
8-4
3
解:如图,∵OA=OB,∠OAB=60°,
∴△AOB是等边三角形,则∠AOB=∠OAB=60°,AB=OA=8厘米.
又∵C是
AB
的中点,
∴∠AOD=
1
2
∠AOB=30°,AB⊥OC,
∴OD=OAcos30°=4
3
(厘米)
∴CD=OC-OD=OA-OD=8-4
3
(厘米).
故答案是:8-4
3
.
考点梳理
考点
分析
点评
垂径定理;勾股定理.
易证得△AOB是等边三角形,则∠AOB=∠OAB=60°,AB=OA=8厘米;由圆心角、弧、弦的关系可知∠AOD=
1
2
∠AOB=30°,所以通过解直角△AOD求得OD=4
3
厘米,故CD=OC-OD=OA-OD=8-4
3
(厘米).
本题考查了垂径定理、勾股定理.此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )