试题
题目:
如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为
(1,3)
(1,3)
.
答案
(1,3)
解:∵四边形OCDB是平行四边形,B(8,0),
∴CD∥OA,CD=OB=8
过点M作MF⊥CD于点F,则CF=
1
2
CD=4
过点C作CE⊥OA于点E,
∵A(10,0),
∴OE=OM-ME=OM-CF=5-4=1.
连接MC,则MC=
1
2
OA=5
∴在Rt△CMF中,由勾股定理得
MF=
M
C
2
-C
F
2
=
5
2
-
4
2
=3
∴点C的坐标为(1,3)
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理;平行四边形的性质.
过点M作MF⊥CD于点F,则CF=
1
2
CD=4,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.
本题考查了勾股定理、垂径定理以及平行四边形的性质,是基础知识要熟练掌握.
计算题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )