试题
题目:
如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为
2
5
2
5
.
答案
2
5
解:连接OB,过O作OC⊥AB于C,
则∠OCP=90°,
∵OP=4,∠APO=30°,
∴OC=
1
2
OP=2,
在Rt△OCB中,由勾股定理得:BC=
O
B
2
-O
C
2
=
3
2
-
2
2
=
5
,
∵OC⊥AB,OC过O,
∴AB=2BC=2
5
,
故答案为:2
5
.
考点梳理
考点
分析
点评
垂径定理;含30度角的直角三角形;勾股定理.
连接OB,过O作OC⊥AB于C,根据含30度角的直角三角形性质求出OC,根据勾股定理求出BC,根据垂径定理得出AB=2BC,即可得出答案.
本题考查了含30度角的直角三角形性质,勾股定理,垂径定理的应用,主要考查学生的推理和计算能力.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )