试题
题目:
等边△ABC内接于⊙O,AB=10cm,则⊙O的半径是
10
3
3
10
3
3
cm.
答案
10
3
3
解:如图,作直径AD,连接BD,
∵等边△ABC内接于⊙O,AD为直径,
∴∠C=60°=∠D,∠ABD=90°,
∵sinD=
AB
AD
,
∴AD=
AB
sin60°
=
10cm
3
2
=
20
3
3
cm,
∴⊙0的半径是
10
3
3
cm,
故答案为:
10
3
3
.
考点梳理
考点
分析
点评
垂径定理;等边三角形的性质;勾股定理.
作直径AD,连接BD,根据等边三角形性质求出∠C=60°,根据圆周角定理求出∠D=∠C=60°,解直角三角形求出AD即可.
本题考查了等边三角形的性质,圆周角定理,解直角三角形的应用,关键是能正确作出辅助线.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )