试题
题目:
(2007·北塘区二模)如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,则直径CD的长为
26
26
.
答案
26
解:连接OA,∵DE⊥AB,且AB=10,
∴AE=BE=5,
设圆O的半径OA的长为x,则OC=OD=x
∵CE=1,
∴OE=x-1,
在直角三角形AOC中,根据勾股定理得:
x
2
-(x-1)
2
=5
2
,化简得:x
2
-x
2
+2x-1=25,
即2x=26,
解得:x=13
所以CD=26.
故答案为:26.
考点梳理
考点
分析
点评
垂径定理;勾股定理.
连接OA构成直角三角形,先根据垂径定理,由DE垂直AB得到点E为AB的中点,由AB=10可求出AE的长,再设出圆的半径OA为x,表示出OE,根据勾股定理建立关于x的方程,求出方程的解即可得到x的值,即为圆的半径,把求出的半径代入即可得到答案.
此题考查了学生对垂径定理的运用与掌握,注意利用圆的半径,弦的一半及弦心距所构成的直角三角形来解决实际问题,做此类题时要多观察,多分析,才能发现线段之间的联系.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )