试题
题目:
(2006·南京)如图,矩形ABCD与圆心在AB上的⊙O交于点G、B、F、E,GB=8cm,AG=1cm,DE=2cm,则EF=
6
6
cm.
答案
6
解:作GH⊥CD,交CD于点H,OW⊥CD,交CD于点W,
则四边形HCBG,AGHD,OWDA,OWCB都是矩形,
∵矩形HCBG是轴对称图形,对称轴是OW,
且GB是直径,
∴OG=OB=
1
2
BG=4cm,
∴HW与WC是对称线段,有WH=WC,
则垂径定理知,
点W是EF的中点,
有EW=WF,
∴CH=BG=2HW=8cm,OA=WD=OG+AG=5cm,
∴EW=DW-DE=5-2=3cm,
∴EF=6cm.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理;矩形的性质.
过O作OW⊥CD,垂足为W,根据矩形的对称性及垂径定理即可求出EF的长.
本题利用了垂径定理和矩形的性质:矩形是轴对称图形求解.
压轴题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )