试题
题目:
已知:如图,∠PAC=30°,在射线AC上顺次截取AD=2cm,DB=6cm,以DB为直径作⊙O交射线AP于E、F两点,又OM⊥AP于M.求OM及EF的长.
答案
解:连接OF,
∵DB=6cm,
∴OD=3cm,
∴AO=AD+OD=2+3=5cm,
∵∠PAC=30°,OM⊥AP,
∴在Rt△AOM中,OM=
1
2
AO=
1
2
×5=
5
2
cm
∵OM⊥EF,
∴EM=MF,
∵MF=
O
F
2
-O
M
2
=
3
2
-
(
5
2
)
2
=
11
2
cm
∴EF=
11
cm.
解:连接OF,
∵DB=6cm,
∴OD=3cm,
∴AO=AD+OD=2+3=5cm,
∵∠PAC=30°,OM⊥AP,
∴在Rt△AOM中,OM=
1
2
AO=
1
2
×5=
5
2
cm
∵OM⊥EF,
∴EM=MF,
∵MF=
O
F
2
-O
M
2
=
3
2
-
(
5
2
)
2
=
11
2
cm
∴EF=
11
cm.
考点梳理
考点
分析
点评
垂径定理;含30度角的直角三角形;勾股定理.
连接OF,由DB=6cm,求得OD的长,则可求得OA的长,由OM⊥AP,∠PAC=30°,即可求得OM的长,然后在Rt△OMF中,利用勾股定理即可求得FM的长,又由垂径定理,即可求得EF的长.
此题考查了直角三角形中30°角的性质、勾股定理、垂径定理等几个知识点.此题难度不大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )