试题
题目:
如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证:四边形AEOD是正方形.
答案
证明:∵OD⊥AB,
∴AD=BD=
1
2
AB.
同理AE=CE=
1
2
AC.
∵AB=AC,∴AD=AE.
∵OD⊥AB OE⊥AC AB⊥AC,
∴∠OEA=∠A=∠ODA=90°,
∴四边形ADOE为矩形.
又∵AD=AE,
∴矩形ADOE为正方形.
证明:∵OD⊥AB,
∴AD=BD=
1
2
AB.
同理AE=CE=
1
2
AC.
∵AB=AC,∴AD=AE.
∵OD⊥AB OE⊥AC AB⊥AC,
∴∠OEA=∠A=∠ODA=90°,
∴四边形ADOE为矩形.
又∵AD=AE,
∴矩形ADOE为正方形.
考点梳理
考点
分析
点评
专题
垂径定理;正方形的判定.
先根据已知条件判定四边形AEOD为矩形,再利用垂径定理证明邻边相等即可证明四边形AEOD为正方形.
本题考查了正方形的判定方法:邻边相等的矩形为正方形和垂径定理的运用.
证明题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )