试题
题目:
(2013·扬州)如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为
AB
上两点,且∠MEB=∠NFB=60°,则EM+FN=
33
33
.
答案
33
解:如图,延长ME交⊙O于G,
∵E、F为AB的三等分点,∠MEB=∠NFB=60°,
∴FN=EG,
过点O作OH⊥MG于H,连接MO,
∵⊙O的直径AB=6,
∴OE=OA-AE=
1
2
×6-
1
3
×6=3-2=1,
OM=
1
2
×6=3,
∵∠MEB=60°,
∴OH=OE·sin60°=1×
3
2
=
3
2
,
在Rt△MOH中,MH=
OM
2
-OH
2
=
3
2
-(
3
2
)
2
=
33
2
,
根据垂径定理,MG=2MH=2×
33
2
=
33
,
即EM+FN=
33
.
故答案为:
33
.
考点梳理
考点
分析
点评
专题
垂径定理;含30度角的直角三角形;勾股定理.
延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.
本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.
压轴题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )