试题
题目:
下列命题是真命题的个数是( )
①直径所对的角是90°;②三点确定一个圆;③圆的切线垂直于过切线的半径;④相等的弦所对的圆周角相等;⑤三角形的内心是三角平分线交点;⑥三角形外心到三角形三个顶点距离相等;
A.2个
B.3个
C.4个
D.5个
答案
A
解:①直径所对的圆周角的度数是90°,直径所对其他的角的度数不一定是直角;故错误.
②过不在同一直线上的三点确定一个圆,过同一直线上的三点不能确定圆;故错误.
③根据切线的性质定理,圆的切线垂直于过切点的半径;故错误.
④相等的弦所对的圆周角也可能互补,因为一条弦对着两个圆周角;故错误.
⑤三角形的内心到三角形的三边的距离相等,是三角形角平分线的交点;故正确.
⑥三角形外心是三角形三边垂直平分线的交点,到三角形三个顶点距离相等;故正确.
故选A.
考点梳理
考点
分析
点评
确定圆的条件;圆的认识;垂径定理;三角形的外接圆与外心.
根据与圆有关的知识及性质定理,作出准确的判断,①直径所对的圆周角是90°;②缺少条件,不在同一直线上的三个点才能确定一个圆;③圆的切线垂直于过切点的半径,而不是过切线的半径;④相等的弦所对的圆周角也可能互补,因为一条弦对着两个圆周角;⑤⑥是正确的.
本题全面考查了与圆有关的定理,细致的考查了各个易错点,包括定理的条件和定理的内容,应重点区分和掌握.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )