试题
题目:
如图所示,⊙O的弦AB、AC的夹角为50°,MN分别为弧AB和弧AC的中点,OM、ON分别交AB、AC于点E、F,则∠MON的度数为( )
A.110°
B.120°
C.130°
D.100°
答案
C
解:∵M、N分别为弧AB和弧AC的中点,
∴OF⊥AC,OE⊥AB,
∴∠OFA=∠OEA=90°,
∴在四边形OEAF中,∠MON=360°-∠OFA-∠OEA-∠A=360°-90°-90°-50°=130°.
故选C.
考点梳理
考点
分析
点评
垂径定理;多边形内角与外角.
根据垂径定理的推论,OM平分弧AB,则OM⊥AB,同理ON⊥AC,在四边形OEAF中利用四边形的内角和定理即可求解.
本题考查了垂径定理及其推论,正确理解定理是关键.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )