试题
题目:
已知点P是半径为5的⊙O内的一个定点,且OP=3,则过点P的所有弦中,弦长为整数的弦共有多少条( )
A.2条
B.3条
C.4条
D.5条
答案
C
解:如图,过P作弦AB⊥OP,交⊙O于A、B,连接OA;
Rt△OAP中,OP=3,OA=5;
根据勾股定理,得AP=4;
∴AB=2AP=8;
故过点P的弦的长度都在8~10之间;
因此弦长为8、9、10;
当弦长为8、10时,过P点的弦分别为弦AB和过P点的直径,分别有一条;
当弦长为9时,根据圆的对称性知,符合条件的弦应该有两条;
故弦长为整数的弦共有4条.
故选C.
考点梳理
考点
分析
点评
垂径定理;勾股定理.
先求出过P点的弦长的取值范围,然后判断出弦长为整数的弦有几条.
此题考查的是垂径定理及勾股定理的应用.需注意的是当弦长为9时,根据圆的对称性可得出两个符合条件的弦,不要漏解.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )