试题
题目:
如图,已知⊙O,线段AB与⊙O交于C、D两点,且OA=OB,
求证:AC=BD.
答案
证明:过点O作OE⊥AB于点E,
∵CD是⊙O的弦,
∴CE=DE,
∵OA=OB,
∴AE=BE,
∴AE-CE=BE-DE,即AC=BD.
证明:过点O作OE⊥AB于点E,
∵CD是⊙O的弦,
∴CE=DE,
∵OA=OB,
∴AE=BE,
∴AE-CE=BE-DE,即AC=BD.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
过点O作OE⊥AB于点E,由垂径定理可知CE=DE,再由OA=OB,OE⊥AB可知AE=BE,故可得出结论.
本题考查的是垂径定理,即平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
证明题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )