试题
题目:
如图,同心圆中,大圆的弦AB交小圆于C,D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为( )
A.3:2
B.
5
:2
C.
5
:
2
D.5:4
答案
C
解:过O点作OE⊥AB,E点为垂足,连OC,OA,如图,
则OE=1,
∵OE⊥AB,
∴CE=DE,AE=BE,
而AB=4,CD=2,
∴CE=1,AE=2,
在Rt△OCE中,OC=
OE
2
+
CE
2
=
1
2
+
1
2
=
2
;
在Rt△OAE中,OA=
OE
2
+
AE
2
=
1
2
+
2
2
=
5
;
∴OC:OA=
2
:
5
,
即两个同心圆的半径之比为
2
:
5
.
故选C.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
过O点作OE⊥AB,E点为垂足,连OC,OA,则OE=1,而AB=4,CD=2,由垂径定理得到CE=1,AE=2,在Rt△OCE中和在Rt△OAE中,分别利用勾股定理求出OC,OA,然后计算它们的比值即可.
本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理.
计算题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )