试题
题目:
如图,⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有( )
A.3个
B.4个
C.5个
D.6个
答案
C
解:当P为AB的中点时,利用垂径定理得到OP⊥AB,此时OP最短,
∵AB=8,∴AP=BP=4,
在直角三角形AOP中,OA=5,AP=4,
根据勾股定理得:OP=
O
A
2
-A
P
2
=3,即OP的最小值为3;
当P与A或B重合时,OP最长,此时OP=5,
∴3≤OP≤5,
则使线段OP的长度为整数的点P有3,4,5,共5个.
故选C
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
当P为AB的中点时OP最短,利用垂径定理得到OP垂直于AB,在直角三角形AOP中,由OA与AP的长,利用勾股定理求出OP的长;当P与A或B重合时,OP最长,求出OP的范围,由OP为整数,即可得到OP所有可能的长.
此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.
计算题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )