试题
题目:
下列命题中,正确的是( )
A.任意三点确定一个圆
B.平分弦的直径垂直于弦
C.圆既是轴对称图形又是中心对称图形
D.垂直弦的直线必过圆心
答案
C
解:不共线的三点确定一个圆,所以A选项不正确;
平分(非直径)弦的直径垂直于弦,所以B选项不正确;
圆既是轴对称图形又是中心对称图形,过圆心的直线都是它的对称轴,圆心是它的对称中心,所以C选项正确;
弦的垂直平分线必过圆心,所以D选项不正确;
故选C.
考点梳理
考点
分析
点评
垂径定理;圆的认识.
根据不共线的三点确定一个圆、垂径定理的推论和圆的有关性质分别判断.
本题考查了垂径定理的推论:平分(非直径)弦的直径垂直于弦;弦的垂直平分线必过圆心.也考查了不共线的三点确定一个圆以及有关圆的性质.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )