试题
题目:
(2013·乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有( )
A.1个
B.2个
C.3个
D.4个
答案
C
解:∵点A的坐标为(0,1),圆的半径为5,
∴点B的坐标为(0,-4),
又∵点P的坐标为(0,-7),
∴BP=3,
①当CD垂直圆的直径AE时,CD的值最小,
连接BC,在Rt△BCP中,CP=
BC
2
-B
P
2
=4;
故CD=2CP=8,
②当CD经过圆心时,CD的值最大,此时CD=直径AE=10;
所以,8≤CD≤10,
综上可得:弦CD长的所有可能的整数值有:8,9,10,共3个.
故选C.
考点梳理
考点
分析
点评
专题
垂径定理;坐标与图形性质;勾股定理.
求出线段CD的最小值,及线段CD的最大值,从而可判断弦CD长的所有可能的整数值.
本题考查了垂径定理的知识,解答本题的关键是熟练掌握垂直弦的直径平分弦,本题需要讨论两个极值点,有一定难度.
压轴题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )