试题

题目:
青果学院(2013·乐山)如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有(  )



答案
C
青果学院解:∵点A的坐标为(0,1),圆的半径为5,
∴点B的坐标为(0,-4),
又∵点P的坐标为(0,-7),
∴BP=3,
①当CD垂直圆的直径AE时,CD的值最小,
连接BC,在Rt△BCP中,CP=
BC2-BP2
=4;
故CD=2CP=8,
②当CD经过圆心时,CD的值最大,此时CD=直径AE=10;
所以,8≤CD≤10,
综上可得:弦CD长的所有可能的整数值有:8,9,10,共3个.
故选C.
考点梳理
垂径定理;坐标与图形性质;勾股定理.
求出线段CD的最小值,及线段CD的最大值,从而可判断弦CD长的所有可能的整数值.
本题考查了垂径定理的知识,解答本题的关键是熟练掌握垂直弦的直径平分弦,本题需要讨论两个极值点,有一定难度.
压轴题.
找相似题