试题

题目:
青果学院如图,已知AB是⊙O的直径,CD为⊙O的弦,FD⊥CD,EC⊥CD,求证:AE=BF.
答案
青果学院证明:过点O作OH⊥CD,如图,
则CH=DH,
∵FD⊥CD,EC⊥CD,
∴CE∥OH∥DF,
∴OH为梯形CDFE的中位线,
∴点O为EF的中点,即OE=OF,
而OA=OB,
∴OA-OE=OB-OF,
即AE=BF.
青果学院证明:过点O作OH⊥CD,如图,
则CH=DH,
∵FD⊥CD,EC⊥CD,
∴CE∥OH∥DF,
∴OH为梯形CDFE的中位线,
∴点O为EF的中点,即OE=OF,
而OA=OB,
∴OA-OE=OB-OF,
即AE=BF.
考点梳理
垂径定理;梯形中位线定理.
过点O作OH⊥CD,根据垂径定理得到CH=DH,由于FD⊥CD,EC⊥CD,所以CE∥OH∥DF,于是可判断OH为梯形CDFE的中位线,则OE=OF,然后利用等量减等量差相等即可得到结论.
本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了梯形的中位线定理.
证明题.
找相似题