试题
题目:
(2011·越秀区一模)如图,⊙O的半径为5,弦AB的长为6,M是AB上的动点,则线段OM长的最小值为( )
A.2
B.3
C.4
D.5
答案
C
解:如图所示,
过O作OM′⊥AB,连接OA,
∵过直线外一点与直线上的所有连线中垂线段最短,
∴当OM于OM′重合时OM最短,
∵AB=6,OA=5,
∴AM′=
1
2
×6=3,
∴在Rt△OAM′中,OM′=
OA
2
-AM
′
2
=
5
2
-
3
2
=4,
∴线段OM长的最小值为4.
故选C.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理.
过O作OM′⊥AB,连接OA,由“过直线外一点与直线上的所有连线中垂线段最短”的知识可知,当OM于OM′重合时OM最短,由垂径定理可得出AM′的长,再根据勾股定理可求出OM′的长,即线段OM长的最小值.
本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,是解答此题的关键.
计算题;探究型.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )