试题
题目:
(2012·德阳模拟)如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为( )
A.
7
2
B.
5
3
C.
6
2
D.
5
2
答案
A
解:连接OA,OB,OC,作CH垂直于AB于H.
∵AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,
∴BE=
1
2
AB=4,CF=
1
2
CD=3,
∴OE=
OB
2
-
BE
2
=
5
2
-
4
2
=3,
OF=
OC
2
-
CF
2
=
5
2
-
3
2
=4,
∴CH=OE+OF=3+4=7,
BH=BE+EH=BE+CF=4+3=7,
在Rt△BCH中根据勾股定理得到BC=
BH
2
+
CH
2
=
7
2
+
7
2
=7
2
,即PA+PC的最小值为7
2
.
故选A.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题;勾股定理;垂径定理.
由于A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值.
本题考查的是轴对称-最短路线问题及垂径定理、勾股定理.根据题意作出辅助线,构造出直角三角形是解答此题的关键.
探究型.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )