试题
题目:
(2011·滨州)如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆心M的坐标为( )
A.(-4,5)
B.(-5,4)
C.(5,-4)
D.(4,-5)
答案
A
解:过点M作MD⊥AB于D,交OC于点E.连接AM,设⊙M的半径为R.
∵以边AB为弦的⊙M与x轴相切,AB∥OC,
∴DE⊥CO,
∴DE是⊙M直径的一部分;
∵四边形OABC为正方形,顶点A,C在坐标轴上,点A的坐标为(0,8),
∴OA=AB=CB=OC=8,DM=8-R;
∴AD=BD=4(垂径定理);
在Rt△ADM中,
根据勾股定理可得AM
2
=DM
2
+AD
2
,
∴R
2
=(8-R)
2
+4
2
,∴R=5.
∴M(-4,5).
故选A.
考点梳理
考点
分析
点评
专题
垂径定理;坐标与图形性质;勾股定理;正方形的性质.
过点M作MD⊥AB于D,连接AM.设⊙M的半径为R,因为四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA=
1
2
AB=4,DM=8-R,AM=R,又因△ADM是直角三角形,利用勾股定理即可得到关于R的方程,解之即可.
本题考查了垂径定理、坐标与图形性质、勾股定理及正方形的性质.解题时,需仔细分析题意及图形,利用勾股定理来解决问题.
证明题.
找相似题
(2013·温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )
(2013·黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
(2013·毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
(2012·绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:
甲:1、作OD的中垂线,交⊙O于B,C两点,
2、连接AB,AC,△ABC即为所求的三角形
乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.
2、连接AB,BC,CA.△ABC即为所求的三角形.
对于甲、乙两人的作法,可判断( )
(2011·泸州)已知⊙O的半径OA=10cm,弦AB=16cm,P为弦AB上的一个动点,则OP的最短距离为( )