试题
题目:
如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么在图中与△ABC相似的三角形的个数有( )
A.1个
B.2个
C.3个
D.4个
答案
B
解:∵DE∥BC,
∴△AED∽△ABC,
∵AB=AC,∠A=36°,BD平分∠ABC,
∴∠DBC=36°=∠A,∠C=72°,
∴△BDC∽△ABC,
∴有两个与△ABC相似的三角形.
故选B.
考点梳理
考点
分析
点评
相似三角形的判定.
平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似,可判断△AED∽△ABC,再由两角对应相等的两个三角形相似可判断△BCD∽△ABC.
考查相似三角形的判定定理:
(1)两角对应相等的两个三角形相似.
(2)两边对应成比例且夹角相等的两个三角形相似.
(3)三边对应成比例的两个三角形相似.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )