试题
题目:
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
A.1条
B.2条
C.3条
D.4条
答案
C
解:∵截得的三角形与△ABC相似,
∴过点M作AB的垂线,或作AC的垂线,或作BC的垂线,所得三角形满足题意
∴过点M作直线l共有三条,
故选C.
考点梳理
考点
分析
点评
相似三角形的判定.
过点M作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.
本题主要考查三角形相似判定定理及其运用.解题时,运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.
找相似题
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )
(2011·永州)下列说法正确的是( )