试题
题目:
如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是( )
A.∠D=∠B
B.∠E=∠C
C.
AD
AB
=
AE
AC
D.
AD
AB
=
DE
BC
答案
D
解:A和B符合有两组角对应相等的两个三角形相似;
C、符合两组对应边的比相等且相应的夹角相等的两个三角形相似;
D、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似.
故选D.
考点梳理
考点
分析
点评
专题
相似三角形的判定.
根据∠1=∠2,可知∠DAE=∠BAC,因此只要再找一组角或一组对应边成比例即可.
此题考查了相似三角形的判定:
①有两个对应角相等的三角形相似;
②有两个对应边的比相等,且其夹角相等,则两个三角形相似;
③三组对应边的比相等,则两个三角形相似.
常规题型.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )