试题
题目:
在不等边锐角△ABC中,点P是AB边上一点(与A、B两点不重合),过P点作一直线,使截得的三角形与△ABC相似,这样的直线可以作( )
A.1条
B.2条
C.3条
D.4条
答案
D
解:分两种情况:
(1)构造三角形,使△APE∽△ABC,△AFP∽△ABC;
(2)构造三角形,使△BGP∽△BCA,△BPH∽△BCA.
故选D.
考点梳理
考点
分析
点评
相似三角形的判定.
构造两个三角形使其具备一组角对应相等,对应角的两边对应成比例即可.
本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )