试题
题目:
如图,AD是直角三角形ABC斜边上的中线,AE⊥AD交CB延长线于E,则图中一定相似的三角形是( )
A.△AED与△ACB
B.△AEB与△ACD
C.△BAE与△ACE
D.△AEC与△DAC
答案
C
解:∵斜边中线长为斜边的一半,
∴AD=BD=CD,
∴∠C=∠DAC,
∵∠BAE+∠BAD=90°,∠DAC+∠BAD=90°,
∴∠BAE=∠DAC,
∴∠C=∠BAE,
∵∠E=∠E,
∴△BAE∽△ACE.
故选C
考点梳理
考点
分析
点评
相似三角形的判定;直角三角形斜边上的中线.
根据等腰三角形底角相等的性质可得∠C=∠DAC,易证∠BAE=∠DAC,即可证明∠C=∠BAE,∴即可证明△AEB与△ACD.
本题考查了相似三角形的证明,考查了等腰三角形底角相等的性质,本题中求证∠C=∠BAE是解题的关键.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )