试题
题目:
(2010·温州模拟)如图,Rt△ABC中,∠BAC=90°,AD⊥BC,∠ACB的平分线交AB于E,交AD于F,下列结论中错误的是( )
A.∠CAD=∠B
B.△AEF是等腰三角形
C.AF=CF
D.△ACF∽△BCE
答案
C
解:由已知得∠ACE=∠ECD,∠ACF+∠AEC=90°,∠ECD+∠CFD=90°,∠CFD=∠AFE,所以∠AFE=∠AEF即AF=AE,所以C项不正确.故答案选C.
考点梳理
考点
分析
点评
专题
相似三角形的判定.
根据题中条件,找出相似三角形,即有对应角相等.另外可以根据角之间的关系找出直角三角形.
此题主要考查了学生对相似三角形的判定及直角三角形的性质的运用.
几何综合题.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )