试题

题目:
青果学院(2011·毕节地区模拟)如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D、交AB于点M.下列结论:
①BD是∠ABC的平分线;
②△BCD是等腰三角形;
③△ABC∽△BCD;
④△AMD≌△BCD.
正确的有(  )个.



答案
B
解:∵AB的中垂线MD交AC于点D、交AB于点M,
∴AD=BD,
∴∠ABD=∠A=36°,
∵AB=AC,
∴∠ABC=∠C=72°,
∴∠DBC=∠ABC-∠ABD=36°,
∴∠ABD=∠CBD,
∴BD是∠ABC的平分线;故①正确;
∴∠BDC=180°-∠DBC-∠C=72°,
∴∠BDC=∠C=72°,
∴△BCD是等腰三角形,故②正确;
∵∠C=∠C,∠BDC=∠ABC=72°,
∴△ABC∽△BCD,故③正确;
∵△AMD中,∠AMD=90°,△BCD中没有直角,
∴△AMD与△BCD不全等,故④错误.
故选B.
考点梳理
相似三角形的判定;全等三角形的判定;线段垂直平分线的性质;等腰三角形的判定与性质.
首先由AB的中垂线MD交AC于点D、交AB于点M,求得△ABD是等腰三角形,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC与∠C的度数,则可求得所有角的度数,可得△BCD也是等腰三角形,则可证得△ABC∽△BCD.
此题考查了线段垂直平分线的性质,等腰三角形的性质,以及相似三角形的判定与性质等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用.
几何综合题.
找相似题