试题
题目:
(2012·宁波模拟)如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是( )
A.不存在
B.等腰三角形
C.直角三角形
D.等腰三角形或直角三角形
答案
C
解:∵△ABD∽△CBD,
∴∠ADB=∠BDC
又∵∠ADB+∠BDC=180°,
∴∠ADB=∠BDC=
1
2
×180°=90°,
∵△ADB∽△ABC,ABC△∽△BDC,
∴∠ABC=∠ADB=∠BDC=90°,
∴△ABC为直角三角形.
故选C.
考点梳理
考点
分析
点评
专题
相似三角形的判定.
所谓新定义“型”试题,是指在试题中给出一个考生从未接触过的新概念,要求现学现用,主要考查学生的阅读理解能力、应变能力和创新能力.“给什么,用什么”是“新定义”型试题解题的基本思路.
求解这类试题的关键是:正确理解新定义,并将此定义作为解题的依据,同时熟练掌握几何中的基本概念和基本性质,把握图形的变化规律.
新定义.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )