试题
题目:
如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是( )
A.∠C=∠E
B.∠B=∠ADE
C.
AB
AD
=
AC
AE
D.
AB
AD
=
BC
DE
答案
D
解:∵∠1=∠2,
∴∠DAE=∠BAC,
A、添加∠C=∠E,可用两角法判定△ABC∽△ADE,故本选项错误;
B、添加∠B=∠ADE,可用两角法判定△ABC∽△ADE,故本选项错误;
C、添加
AB
AD
=
AC
AE
,可用两边及其夹角法判定△ABC∽△ADE,故本选项错误;
D、添加
AB
AD
=
BC
DE
,不能判定△ABC∽△ADE,故本选项正确;
故选D.
考点梳理
考点
分析
点评
相似三角形的判定.
先根据∠1=∠2求出∠BAC=∠DAE,再根据相似三角形的判定方法解答.
本题考查了相似三角形的判定,先求出两三角形的一对相等的角∠BAC=∠DAE是确定其他条件的关键,注意掌握相似三角形的几种判定方法.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )