试题
题目:
在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件中不能判定这两个三角形相似的是( )
A.∠A=55°,∠D=35°
B.AC=9,BC=12,DF=6,EF=8
C.AC=3,BC=4,DF=6,DE=8
D.AB=10,AC=8,DE=15,EF=9
答案
C
解:A、相似:∵∠A=55°∴∠B=90°-55°=35°∵∠D=35°∴∠B=∠D∵∠C=∠F∴△ABC∽△DEF;
B、相似:∵AC=9,BC=12,DF=6,EF=8,∴
AC
DF
=
BC
EF
=
3
2
,∵∠C=∠F∴△ABC∽△DEF;
C、有一组角相等两边对应成比例,但该组角不是这两边的夹角,故不相似;
D、相似:∵AB=10,BC=6,DE=15,EF=9,∴
AB
DE
=
BC
EF
=
2
3
,∵∠C=∠F∴△ABC∽△DEF;
故选C.
考点梳理
考点
分析
点评
相似三角形的判定.
根据相似三角形的判定方法对各个选项进行分析即可.
此题主要要求学生熟练掌握相似三角形的判定定理:两角对应相等,两组边对应成比例且夹角相等,三边对应成比例.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )