试题
题目:
(2012·孝感模拟)在△ABC与△A′B′C′中,有下列条件:(1)
AB
A′B′
=
BC
B′C′
;(2)
BC
B′C′
=
AC
A′C′
;(3)∠A=∠A′;(4)∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有多少组( )
A.1
B.2
C.3
D.4
答案
C
解:能判断△ABC∽△A′B′C′的有:(1)(2),(2)(4),(3)(4),
∴能判断△ABC∽△A′B′C′的共有3组.
故选C.
考点梳理
考点
分析
点评
相似三角形的判定.
根据相似三角形的判定定理:三组对应边的比相等的两个三角形相似、两组对应边的比相等且夹角对应相等的两个三角形相似与有两组角对应相等的两个三角形相似,即可得能判断△ABC∽△A′B′C′的有:(1)(2),(2)(4),(3)(4),继而求得答案.
此题考查了相似三角形的判定.此题比较简单,注意两组对应边的比相等且夹角对应相等的两个三角形相似定理中的夹角.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )