试题
题目:
(2001·杭州)如图,在矩形ABCD中,点E是AD上任意一点,则有( )
A.△ABE的周长+△CDE的周长=△BCE的周长
B.△ABE的面积+△CDE的面积=△BCE的面积
C.△ABE∽△DCE
D.△ABE∽△EBC
答案
B
解:A、△ABE的周长+△CDE的周长=AB+AE+BE+DE+CD+CE=AD+BE+CE+2AB=BC+BE+CE+2AB=△BEC的周长+2AB,显然A的结论不成立;
B、S
△ABE
+S
△CDE
=
1
2
(AE+DE)×AB=
1
2
AD×AB=S
△BCE
,故B正确;
C、D若成立,则∠BEC必须满足∠BEC=90°,显然∠BEC不一定是直角,故C、D错误;
故选B.
考点梳理
考点
分析
点评
相似三角形的判定;矩形的性质.
A选项,可分别写出三个三角形的边长,然后根据矩形的对边相等,来判断结论是否正确;
B选项,思路同A,分别表示出三个三角形的面积,然后结合矩形的性质进行判断;
C、D选项,显然若这两个结论成立,必须有∠BEC=90°作前提条件,因此C、D是错误的.
此题主要考查了矩形的性质、三角形周长和面积的计算方法、相似三角形的判定和性质等知识.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有( )
(2012·河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )
(2012·海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )