试题
题目:
已知半径为
3
的⊙O中,弦AB=3,则弦AB所对圆周角的度数
60°或120°
60°或120°
.
答案
60°或120°
解:如图所示,
连接OA、OB,过O作OF⊥AB,则AF=
1
2
AB,∠AOF=
1
2
∠AOB,
∵OA=
3
,AB=3,
∴AF=
1
2
AB=
1
2
×3=
3
2
,
∴sin∠AOF=
AF
OA
=
3
2
3
=
3
2
,
∴∠AOF=60°,
∴∠AOB=2∠AOF=120°,
∴∠ADB=
1
2
∠AOB=
1
2
×120°=60°,
∴∠AEB=180°-60°=120°.
故答案为:60°或120°.
考点梳理
考点
分析
点评
圆周角定理;垂径定理.
先根据题意画出图形,连接OA、OB,过O作OF⊥AB,由垂径可求出AF的长,根据特殊角的三角函数值可求出∠AOF的度数,由圆周角定理及圆内接四边形的性质即可求出答案.
此题考查的是圆周角定理及垂径定理,解答此题时要注意一条弦所对的圆周角有两个,这两个角互为补角.
找相似题
(2013·自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( )
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )