试题
题目:
(2012·惠安县质检)如图,∠A是⊙O的圆周角,∠A=60°,则∠OBC的度数为
30
30
度.
答案
30
解:∵弧BC对的圆心角是∠BOC,对的圆周角是∠A,∠A=60°,
∴∠BOC=2∠A=120°,
∵OB=OC,
∴∠OBC=∠OCB,
∵∠OBC+∠OCB+∠BOC=180°,
∴∠OBC=30°,
故答案为:30.
考点梳理
考点
分析
点评
专题
圆周角定理;三角形内角和定理;等腰三角形的性质.
根据圆周角定理求出∠BOC=2∠A=120°,根据等腰三角形性质求出∠OBC=∠OCB,在△BOC中,根据三角形的内角和定理求出即可.
本题考查了等腰三角形的性质,三角形的内角和定理,圆周角定理的应用,解此题的关键是求出∠BOC的度数,题目比较典型,难度不大.
计算题.
找相似题
(2013·自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( )
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )