试题
题目:
(2012·沈河区模拟)弦AB把⊙O分成的两条弧的度数比是1:2,则弦AB所对的圆周角是
60°或120°
60°或120°
.
答案
60°或120°
解:∵弦AB把⊙O分成的两条弧的度数比是1:2,
∴两弧所对的圆心角分别为:120°,240°,
∴弦AB所对的圆周角是60°或120°.
故答案为:60°或120°.
考点梳理
考点
分析
点评
专题
圆周角定理;圆心角、弧、弦的关系.
先根据圆心角、弧、弦的关系求出两弧所对的圆心角,再根据圆周角定理得出圆周角的度数即可.
本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
探究型.
找相似题
(2013·自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( )
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )