试题
题目:
如图,以⊙O的直径BC为一边作等边△ABC,AB和AC交⊙O于D和E两点,求证:BD=DE=EC.
答案
证明:如图,连接OD、OE.
∵△ABC是等边三角形,
∴∠B=60°.
又∵OB=OD,
∴△OBD是等边三角形,
∴∠BOD=60°.
同理,△EOC是等边三角形,则∠EOC=60°.
∵BC是⊙O的直径,
∴∠DOE=180°-∠BOD-∠EOC=60°,
∴
BD
=
DE
=
EC
,
∴BD=DE=EC.
证明:如图,连接OD、OE.
∵△ABC是等边三角形,
∴∠B=60°.
又∵OB=OD,
∴△OBD是等边三角形,
∴∠BOD=60°.
同理,△EOC是等边三角形,则∠EOC=60°.
∵BC是⊙O的直径,
∴∠DOE=180°-∠BOD-∠EOC=60°,
∴
BD
=
DE
=
EC
,
∴BD=DE=EC.
考点梳理
考点
分析
点评
专题
圆周角定理;等边三角形的性质;圆心角、弧、弦的关系.
如图,连接OD、OE,构建等边△OBD、△ODE、△OEC;然后由等边三角形的性质和圆心角、弧、弦的关系证得BD=DE=EC.
本题考查了圆周角定理,等边三角形的性质以及圆周角、弧、弦的关系.解题的难点是辅助线的做法.
证明题.
找相似题
(2013·自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( )
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )