试题
题目:
(2009·冷水江市一模)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于( )
A.4
B.6
C.8
D.12
答案
C
解:∵∠BAC=120°,AB=AC=4
∴∠C=∠ABC=30°
∴∠D=30°
∵BD是直径
∴∠BAD=90°
∴BD=2AB=8.
故选C.
考点梳理
考点
分析
点评
圆周角定理.
根据三角形内角和定理可求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求得BD的长.
此题综合运用了三角形的内角和定理、等腰三角形的性质、圆周角定理的推论和30°的直角三角形的性质.
找相似题
(2013·自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( )
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )