试题
题目:
如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P是直径MN上一动点.若MN=2
2
,则PA+PB的最小值是( )
A.2
2
B.
2
C.1
D.2
答案
D
解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,OA,OB,PA,AA′.
∵点A与A′关于MN对称,点A是半圆上的一个三等分点,
∴∠A′ON=∠AON=60°,PA=PA′,
∵点B是弧AN的中点,
∴∠BON=30°,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=
2
,
∴A′B=2.
∴PA+PB=PA′+PB=A′B=2.
故选D.
考点梳理
考点
分析
点评
轴对称-最短路线问题;勾股定理;圆心角、弧、弦的关系;圆周角定理.
本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.
本题结合图形的性质,考查轴对称--最短路线问题.其中求出∠BOC的度数是解题的关键.
找相似题
(2013·自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( )
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )