试题
题目:
如图,E,B,A,F四点共线,点D是正三角形ABC的边AC的中点,点P是直线AB上异于A,B的一个动点,且满足∠CPD=30°,则( )
A.点P一定在射线BE上
B.点P一定在线段AB上
C.点P可以在射线AF上,也可以在线段AB上
D.点P可以在射线BE上,也可以在线段
答案
B
解:连接BD、PC、PD,如图,
∵△ABC等边三角形,
∴∠CBD=30°,
又∠CPD=30°,
∴∠CBD=∠CPD,
∴B、C、D、P四点共圆,
又∠BDC=90°,
∴点P在以BC为直径的圆上,
∴点P一定在线段AB上.
故选B.
考点梳理
考点
分析
点评
专题
圆周角定理;等边三角形的性质.
连接BD、PC、PD,如图,由等腰三角形的性质可得∠CBD=30°,而∠CPD=30°,可得B、C、D、P四点共圆,于是可得P点的位置.
本题考查了圆周角定理及等边三角形的性质;利用四点共圆是正确解答本题的关键.
几何图形问题.
找相似题
(2013·自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( )
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )