试题
题目:
(2012·德庆县一模)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE的长度为( )
A.2
B.1
C.3
D.4
答案
A
解:∵直径AB⊥弦CD,又CD=8,
∴CE=DE=
1
2
CD=4,
在Rt△CEO中,OC=5,CE=4,
根据勾股定理得:OE=
OC
2
-
CE
2
=3,
则AE=OA-OE=5-3=2.
故选A
考点梳理
考点
分析
点评
专题
垂径定理;圆周角定理.
由直径AB垂直于弦CD,利用垂径定理得到E为CD的中点,由CD的长求出CE的长,再由圆的半径OC的长,在直角三角形CEO中,利用勾股定理求出OE的长,再由OA-OE即可求出AE的长.
此题考查了垂径定理,以及勾股定理,垂径定理的内容为:垂直于弦的直径平分于弦,且平分弦所对的弧,熟练掌握定理是解本题的关键.
计算题;压轴题.
找相似题
(2013·自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( )
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )