试题
题目:
如图,在⊙O中,已知∠ACB=∠CDB=60°,AC=3,求△ABC的周长.
答案
解:∵∠A=∠BDC,
而∠ACB=∠CDB=60°,
∴∠A=∠ACB=60°,
∴△ACB为等边三角形,
∵AC=3,
∴△ABC的周长为9.
解:∵∠A=∠BDC,
而∠ACB=∠CDB=60°,
∴∠A=∠ACB=60°,
∴△ACB为等边三角形,
∵AC=3,
∴△ABC的周长为9.
考点梳理
考点
分析
点评
专题
圆周角定理;等边三角形的性质.
由∠A=∠BDC,而∠ACB=∠CDB=60°,所以∠A=∠ACB=60°,得到△ACB为等边三角形,又AC=3,即可得到△ABC的周长.
本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了等边三角形的判定与性质.
计算题.
找相似题
(2013·自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为( )
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是( )