试题

题目:
青果学院如图,已知O是等边三角形△ABC内一点,∠AOB、∠BOC、∠AOC的度数之比为6:5:4,在以OA、OB、OC为边的三角形中,此三边所对的角的度数是
36°或60°或84°
36°或60°或84°

答案
36°或60°或84°

解:∵∠AOB+∠BOC+∠AOC=360°且∠AOB:∠BOC:∠AOC=6:5:4,
∴∠AOB=144°,∠BOC=120°,∠AOC=96°,
将△AOC绕点A顺时针旋转60°得到三角形AO′B,连接OO′,
∵△AO′B≌△AOC,青果学院
∴∠AO′B=∠AOC=96°,O′B=OC,AO′=AO,
∵∠OAO′=60°(将△AOC绕点A顺时针旋转60°得到三角形AO′B),AO=AO′,
∴△AOO′是等边三角形,
∴OO′=AO,
∴△BOO′即是以OA,OB,OC为边长构成的三角形,
∵∠AOO′=∠AO′O=60°,
∴∠BOO′=∠AOB-∠AOO′=144°-60°=84°,
∠BO′O=∠AO′B-∠AO′O=96°-60°=36°,
∠O′BO=180°-84°-36°=60°,
以OA,OB,OC为三边所构成的三角形中,
三边所对的角度分别是60°,36°,84°.
故答案为:36°或60°或84°.
考点梳理
等边三角形的性质;全等三角形的判定与性质;等边三角形的判定.
求出∠AOB、∠BOC、∠AOC的度数,将△AOC绕点A顺时针旋转60°得到三角形AO'B,连接OD O',证等边三角形BOO',推出△BOO'即是以OA,OB,OC为边长构成的三角形即可.
本题主要考查对等边三角形的性质和判定,全等三角形的性质和判定的理解和掌握,能熟练地运用性质进行推理是解此题的关键.
证明题.
找相似题