试题
题目:
观察下面由※组成的图案和算式,解答问题:
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)请猜想1+3+5+7+9+…+19=
10
2
10
2
;
(2)请猜想1+3+5+7+9+…+(2n-1)=
n
2
n
2
;
(3)请用上述规律计算:1+3+5+…+2003+2005.
答案
10
2
n
2
解:(1)1+3=4=2
2
,
1+3+5=9=3
2
,
1+3+5+7=16=4
2
,
1+3+5+7+9=25=5
2
,
…
1+3+5+7+9+…+19=10
2
;
故填10
2
;
(2)由(1)可得1+3+5+7+9+…+(2n-1)=n
2
,
故填n
2
;
(3)1+3+5+…+2003+2005=(1003)
2
=1006009.
故填1006009.
考点梳理
考点
分析
点评
规律型:数字的变化类.
(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可;
(2)由(1)的结论可知是n 个连续奇数的和,得出结果;
(3)1+3+5+…+2003+2005是连续1003个奇数的和,再由(2)直接得出结果.
此题重在发现连续奇数和的等于数的个数的平方,利用此规律即可解决问题.
找相似题
(2013·日照)如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是( )
(2013·南平)给定一列按规律排列的数:
1
2
,
2
5
,
3
10
,
4
17
,…
,则这列数的第6个数是( )
(2011·济南)观察下列各式:
(1)1=1
2
;(2)2+3+4=3
2
;(3)3+4+5+6+7=5
2
;(4)4+5+6+7+8+9+10=7
2
; …
请你根据观察得到的规律判断下列各式正确的是( )
(2010·安顺)四个电子宠物排座位,一开始,小鼠、小猴、小兔、小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换…这样一直下去,则第2005次交换位置后,小兔所在的号位是( )
(2008·赤峰)给定一列按规律排列的数:1,
1
3
,
1
5
,
1
7
,
1
9
…它的第10个数是( )