完全平方数;规律型:数字的变化类.
(1)观察下列各式:1×2×3×4+1=52=(12+3×1+1)2;2×3×4×5+1=112=(22+3×2+1)2;3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,得出规律:n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2,(n≥1),所以可得出5×6×7×8+1=(52+3×5+1)2=412;
(2)根据(1)得出的规律可得出结论.
此题考查了完全平方数的知识,解答本题的关键是发现规律为n(n+1)(n+2)(n+3)+1=(n2+3n+1)2(n≥1),一定要通过观察,分析、归纳并发现其中的规律,难度较大.
规律型.