试题
题目:
下列图案均是用长度相同的小木棒按一定规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2根图案需10根小木棒…,依次规律,拼搭第9个图案需要小木棒
108
108
根.
答案
108
解:根据题意:第1个图案需要小木棒1×(1+3)=4根,
第二个图案需要2×(2+3)=10根,
第三个图案需要3×(3+3)=18根,
第四个图案需要4×(4+3)=28根,
…,
第9个图案需要小木棒的根数=9×(9+3)=108根.
故答案为:108.
考点梳理
考点
分析
点评
专题
规律型:图形的变化类.
分析可得:第1个图案需要小木棒1×(1+3)=4根,第二个图案需要2×(2+3)=10根,第三个图案需要3×(3+3)=18根,第四个图案需要4×(4+3)=28根,…,继而即可找出规律,求出第9个图案需要小木棒的根数.
此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,此类题目难度一般偏大,属于难题.
规律型.
找相似题
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2011·南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )
(2010·烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是
(20七0·温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是( )
(2008·聊城)如图是某广场用地板铺设的部分图案,中央是1块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( )