试题
题目:
(2011·南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )
A.78
B.66
C.55
D.50
答案
B
解:由题意得:第一个图形中小正方形的个数为1,
第二个为1+2=3,
第三个为1+2+3=6,
第四个为1+2+3+4=10,
…;
第(11)个图形中小正方形的个数为:1+2+3+4+5+6+7+8+9+10+11=66.
故选B.
考点梳理
考点
分析
点评
专题
规律型:图形的变化类.
第一个图形中小正方形的个数为1,第二个为1+2=3,第三个为1+2+3=6,第四个为1+2+3+4=10,故可得出规律求出小正方形的个数.
本题考查了规律型中的图形变化问题,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到小正方形增加的规律.
压轴题;规律型.
找相似题
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2010·烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是
(20七0·温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是( )
(2008·聊城)如图是某广场用地板铺设的部分图案,中央是1块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( )
(2007·日照)如图所示的阴影部分图案是由方格纸上3个小方格组成,我们称这样的图案为L形.那么在由4×5个小方格组成的方格纸上最多可以画出不同位置的L形图案的个数是( )个.